Bacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2

نویسندگان

  • Louise C. Andresen
  • Jennifer A. J. Dungait
  • Roland Bol
  • Merete B. Selsted
  • Per Ambus
  • Anders Michelsen
چکیده

It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g(-1) soil) of (13)C-labeled glycine ((13)C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The (13)C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. (13)C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated (13)C in all treatments, whereas fungi had minor or no glycine derived (13)C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G(+) bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was (13)C-depleted (δ(13)C = 12.2‰) compared to ambient (δ(13)C = ∼-8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future changes in substrate availability and climatic factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global change effects on plant-soil interactions

As plants of different life-forms generate different soil communities, assessment of climate change impacts on soil communities and soil services must consider how these impacts are conditioned by the vegetation above. We investigated how soil communities under different plant species in the same ecosystem respond to global change. In a heathland FACE-experiment, we modelled projected global ch...

متن کامل

Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland

In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of ...

متن کامل

Summer drought reduces total and litter - derived soil CO 2 effluxes in temperate grassland – clues from a 13 C litter addition experiment

Current climate change models predict significant changes in rainfall patterns across Europe. To explore the effect of drought on soil CO2 efflux (FSoil) and on the contribution of litter to FSoil we used rain shelters to simulate a summer drought (May to July 2007) in an intensively managed grassland in Switzerland by reducing annual precipitation by around 30% similar to the hot and dry year ...

متن کامل

Comparative detection of climate change in two climate zones, very humid - temperate and cold mountainous (Case study: Bandar Anzali and Shahrekord)

Among the important challenges facing water resources of the country, one can mention the phenomenon of climate change and its impacts. The General Circulation Models (GCMs) can provide the best information about the response to increasing the concentration of greenhouse gases. Since the outputs of this model do not have sufficient time and space accuracy for studies on the effects of climate c...

متن کامل

Comparative detection of climate change in two climate zones, very humid - temperate and cold mountainous (Case study: Bandar Anzali and Shahrekord)

Among the important challenges facing water resources of the country, one can mention the phenomenon of climate change and its impacts. The General Circulation Models (GCMs) can provide the best information about the response to increasing the concentration of greenhouse gases. Since the outputs of this model do not have sufficient time and space accuracy for studies on the effects of climate c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014